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EXECUTIVE SUMMARY 

Performance of transportation systems is directly linked to the economic development of 

societies on local, national, and global scales. An efficient transportation system should 

support the economic growth by reducing the travel time of passengers and goods, 

decreasing transportation cost, and maintaining connectivity between different markets 

and critical origin/destination points. Bridges are recognized as key components in ground 

transportation systems. These structures are vulnerable to several deterioration 

mechanisms which may cause gradual deterioration or sudden failures. These 

mechanisms can cause a significant drop in the transportation system functionality 

leading to severe economic and social impacts. Natural hazards (e.g., floods and 

earthquakes), environmental stressors (e.g., corrosion), and man-made extreme events 

(e.g., blast explosions and fires) are recognized as the main sources that drive bridge 

deterioration. Since some of these hazards (e.g., corrosion and floods) may be related to 

long-term climate behavior, climate change can significantly affect the performance of 

bridges under these hazards. 

Deteriorating bridges require maintenance and repair activities to extend their 

service life and maintain a satisfactory performance level. These maintenance actions 

can lead to indirect costs associated with traffic delays and environmental impacts, in 

addition to the direct cost of maintenance actions, which can significantly increase the 

life-cycle cost of the bridge under consideration. Accordingly, these indirect effects should 

be considered for the proper life-cycle management of deteriorating bridges. Quantifying 

the uncertainties associated with different hazards and deterioration mechanisms should 

be included in maintenance planning while considering effects of climate change. 

Furthermore, an optimized maintenance planning to minimize the direct (e.g., structural 

rehabilitation costs) and indirect costs (e.g., traffic delays and environmental effects) 

should be performed with climate change in mind. 

This report presents a probabilistic framework for risk assessment of bridges under 

flood and flood induced scour considering climate change. The flood and streamflow 

prediction is performed using Global Climate Models. The downscaled precipitation and 

temperature climate data are adopted from the Coupled Model Inter-comparison Project 



ix 
 

Phase 5 (CMIP5) archive for the location of interest during the time span of 1960 to 2100. 

Time-dependent scour depth is quantified and its effect on the axial and lateral capacity 

of the bridge foundation is evaluated. The annual point-in-time failure probability of the 

bridge due to flood-induced loads is used to predict the cumulative failure probability 

profiles of the bridge. After evaluating the consequences associated with bridge failure, 

the time variant bridge risk profile is established. This report also discusses probabilistic 

approaches capable of optimizing maintenance activities of deteriorating bridges while 

considering climate change, direct maintenance costs, and indirect impact arising from 

maintenance and repair actions. Uncertainties associated with the various stages of the 

life-cycle management are discussed.  
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INTRODUCTION 

Bridges are vulnerable to continuous deterioration due to various mechanical and 

environmental stressors. Among the various extreme events (e.g., earthquake, floods, 

and corrosive environments) which may threat the safety of bridges, hydraulic-related 

ones have been identified as the leading cause of bridge failure (AASHTO 2010; Briaud 

et al. 2013). In the United States, more than 50% of bridges failures are attributed to 

hydraulic stressors such as flood and scour (Cook et al. 2015). These type of failures are 

highly dependent on precipitation patterns and flood events at the bridge location. In this 

context, the National Oceanic and Atmospheric Administration (NOAA) reported an 

average increase of 612% in the number of floods in the United States since the 1960s; 

future increase in this percentage is also possible and expected (NOAA 2015). This 

increase in flood frequency and intensity, which may be attributed to climate change, can 

unfavorably affect the safety of our Nation’s bridges. Subsequently, our transportation 

systems and the communities which they serve may experience overwhelming 

consequences due to the impact of climate change. As an indication on the severity of 

this problem, the 2015 flooding in Texas and Oklahoma led to at least five reported 

complete or partial bridge failures, 31 deaths, and more than $2.5 billion in economic 

losses to the region (Fechter 2015; Danner and Fuller 2015; Smith et al. 2017). As a result, 

bridge design and management approaches should consider climate change in 

quantifying the future flood hazard. 

Prediction of future temperature, precipitation, regional moisture, rainfall, and river 

streamflow can be subjected to significant uncertainty due to climate change. Traditional 

design methods relying on return periods (i.e., 50, 100, or 500 year floods) may not 

provide reliable results. Accordingly, in order to improve future predictions, more 

advanced computational tools such as global climate modeling should be adopted. Global 

Climate Models (GCMs) provide a numerical representation of chemical, physical, and 

biological aspects of global climate system. Downscaling methods should next be used 

for deriving regional climate information from the adopted global scale data. For the 

proper implementation of these models, different types of GCMs, scenarios of future 

greenhouse gas (GHG) emission, and downscaling methods should be considered.  
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The Couple Model Inter-comparison Project Phase 5 (CMIP5) GCMs with more than 50 

different models are able to project the past and future climate data (Taylor et al. 2012). 

Different types of climate scenarios vary based on their atmospheric horizontal resolution 

and their model types. These models also take the interaction of the various natural 

effects such as oceans, vegetation, and land surfaces into account. (Solomon et al. 2007; 

Sheffield et al. 2013a,b; and Maloney et al. 2014). Since the GCM models significantly 

differ in their prediction of temperature, precipitation and other future climatic data, 

appropriate models should be selected by comparing their results to observed 

measurements at a given location. Along with GCM models, uncertainties in future 

greenhouse gases (GHG) emission are presented in term of Representative 

Concentration Pathways (RCPs). Different RCP values represent the change in radiative 

forcing of GHG from pre-industrial times to 21st century. Radiative forcing can be 

described as change in the balance of radiation in W/m2 between incoming solar radiation 

and outgoing infrared radiation. RCP 2.6 (2.6 W/m2), RCP 4.5 (4.5 W/m2), RCP 6 (6 W/m2), 

and RCP 8.5 (8.5 W/m2) are 4 common RCP values. The higher RCP values represent 

higher predicted radiation in the future.  

In order to study climate patterns associated with a given location, the global GCM 

data should be converted to regional scale data. This can be achieved through various 

methods such as running a higher resolution GCM, using boundary conditions of 

surrounding global climate model, and using statistical downscaling methods. Although 

applying the statistical methods is less complicated than the others, it can still produce 

highly accurate results (Laprise 2008; Coiffier 2011). Since there are several GHG 

emission scenarios, different global climate modeling techniques, and downscaling 

methods, climate researchers recommend using several scenarios. Each of these 

scenarios can be characterized by its own future GHG emission level, global climate 

model, and downscaling technique (Xue et al. 2014). Next, hydrological models, such as 

the variable infiltration capacity (VIC) (Liang et al. 1994) and Riverware (Zagona et al. 

2001), or statistical methods (Croke et al. 2005) should be used to estimate the time-

dependent river discharge and quantify the future flood hazard. Such approach has been 

implemented in McPherson (2016) to quantify the impact of climate change on the Red 

River basin. 
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Among various hydraulic-related sources of bridge failure, preventing and managing 

scour problems represent a significant challenge for bridge managers (Ettouney and 

Alampalli 2011). This is because scour may occur in most soils and can lead to the failure 

of bridge foundations and consequently the entire structure. In addition, detecting and 

managing the scour may represent additional challenges since its effects may not be 

visible. Due to the importance of this issue, researchers have focused on evaluating the 

effect of scour on the performance of bridges using deterministic (e.g., Govindasamy et 

al. 2008; Arneson et al. 2012) and probabilistic (e.g., Briaud et al. 2007; Bolduc et al. 

2008) approaches. In addition, multi-hazard analysis of bridges considering scour effects 

has been also presented in recent years (e.g., Decò and Frangopol 2011; Wang et al. 

2014; Gehl and D’Ayala 2016). However, none of these studies examined the potential 

influence of climate change on flood hazard and scour predictions.  

This report presents a probabilistic framework for assessment of time-variant risk 

of bridge failure due to floods and flood-induced scour considering the future change in 

climate conditions. The approach uses downscaled GCM data to obtain future climate 

trends (e.g., precipitation and temperature profiles) under different climate scenarios. The 

results of streamflow predictions based on various future climate scenarios are employed 

to quantify the future flood hazards. The failure probability of the bridge due to flood and 

flood-induced scour is quantified using Monte Carlo simulation. Risk is computed by 

combining consequences of bridge failure including direct rebuilding cost and indirect 

losses arising from traffic delays due to road closure. The proposed approach is applied 

to the I-35 Red River Bridge located on the Texas-Oklahoma border. Additionally, an 

approach for risk-based management of bridges is presented.  

ANALYSIS OF HISTORIC PRECIPITATION TRENDS 

Climate change and global warming have been popular research topics among 

researchers and politicians. Regardless of personal and political opinions on global 

warming and climate change, most will agree that local, regional and even national 

climates have seen significant change over the past few decades. For instance, there has 

been a noticeable change in the amount and frequency at which precipitation events 

occur in central Oklahoma. Based on the National Climate Assessment II (Melillo et al. 
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2014), a temperature increase of 1.5̊ Fahrenheit since 1960 has been observed 

throughout the Great Plains. In addition, more unpredictable precipitation patterns, 

including long droughts and severe floods, have been reported. Analysis of past climate 

records indicated that Oklahoma was characterized with strong spring storms, hot and 

dry summers with relatively few showers and storms, and cold winters with few snowfall 

events exceeding 2-4 inches of snowfall per event. Contrasting that with observations in 

the recent years with frequent summer showers, less frequent spring storms, and winters 

seeing very little to no snowfall. These observations, although rudimentary, are an 

important part of the scientific process for determining changes in our local climates and 

inferring trends and future responses to changes. Observations alone are not sufficient 

to provide enough evidence for a profound understanding of what is occurring in our 

climate and the ramifications of subtle variations and other environmental factors. 

In this report, National Aeronautic and Space Administration (NASA 2017) and 

National Oceanic and Atmospheric Administration’s (NOAA 2017) data sets are used to 

support and verify observations made and provide data for historical climate analysis. 

Data obtained include atmospheric CO2, precipitation records, and river discharge for the 

Red River along the southern border of Oklahoma. This data is plotted and trend lines 

are fitted so that reasonable inference can be made with very little data manipulation. 

From simple analysis of the various datasets, a trend between the rising CO2 and an 

increase in amount and variability of rainfall affecting the drainage basin can be seen. 

Figure 1 shows data obtained from NASA on global atmospheric CO2. Extrapolating this 

data, predicts that in the next 50 years levels of atmospheric CO2 will exceed 500 ppm. 

The effects of the rising CO2 may be observed in precipitation data. Data obtained 

from NOAA tracks monthly average precipitation and calculates the deviation from 

monthly normal for the specific station where precipitation is measured. The deviations in 

monthly precipitation were plotted for 1974 to 2016 as seen in Figures 2 to 10. In these 

figures, “normal” baselines are produced using the observed average monthly data of 30 

years. The horizontal gridline at 0 indicates no deviation from normal precipitation. The 

figures show that since 1974, deviations in precipitation have become increasingly 

variable and peaks are higher than historically recorded for several key months. The 

months of April, May, June, and July, which historically have been classified as dry 
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months, have seen the most drastic changes in recent years. Plotted trend lines show 

that these months are experiencing increasing deviations from normal precipitations 

levels. During the same period, the months of August, October and November are 

trending downward, which means that this investigated weather station is experiencing 

several months of increasing rainfall followed by several months of decreasing rainfall. 

This increase in the peak flow is directly related to flood occurrence in these areas and 

can potentially cause an increase in erodibility of the soil and an adverse effect on the 

stability of many bridges in the associated drainage basin.  

 

Figure 1. Average atmospheric CO2 since 1958 (NASA 2017) 

 

 

Figure 2. Precipitation deviation from normal in January since 1974 
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Figure 3. Precipitation deviation from normal in April since 1974. 

 

 

Figure 4. Precipitation deviation from normal in May since 1974 
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Figure 5. Precipitation deviation from normal in June since 1974 

 

 

Figure 6. Precipitation deviation from normal in July since 1974 
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Figure 7. Precipitation deviation from normal in August since 1974 

 

 

Figure 8. Precipitation deviation from normal in September since 1974 
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Figure 9. Precipitation deviation from normal in October since 1974 

 

 

Figure 10. Precipitation deviation from normal in November since 1974 

 

Historical data, although helpful, is limited on its ability to project into the future and 

provide adequate information to draw definitive conclusions on future climate trends. The 

use of proper climate modeling enables obtaining more accurate solutions and predictions. 

From these models, different scenarios can be formed by changing one or several of the 

model parameters. A more detailed explanation of these variables and such climate 

modeling is presented in the following sections of this report.  
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FUTURE CLIMATE PREDICTIONS 

Climate conditions, including temperature patterns and precipitation patterns has seen 

considerable change in recent decades (Solomon 2007). Significant research has been 

directed to provide more precise future climate predictions in North and Central America 

(e.g., Sheffield et al. 2013a,b; Maloney et al. 2014). In particular, the Coupled Model Inter-

comparison Project Phase 5 (CMIP5) is one of the widely used global climate models 

(GCMs) that can provide future climate projections on the near and long-term time scales 

(Taylor et al. 2012). This dataset includes more than 50 models that are capable of 

providing past and future climate data. Different types of climate scenarios differ based 

on their atmospheric horizontal resolution and their model types. These models also 

consider the interaction of various natural effects such as vegetation, oceans, and land 

surfaces. (Solomon et al. 2007; Sheffield et al. 2013a,b). Since the GCMs significantly 

differ in their prediction of temperature, precipitation and other future climatic data, they 

should be selected based on a comparison of their results with the available observed 

data at a given location.  

Along with GCM models, uncertainties in future greenhouse gases (GHG) and 

those arising from the downscaling procedure should be considered. Different GHG 

emission scenarios are presented in term of Representative Concentration Pathways 

(RCPs). Different RCP values represent the change in radiative forcing of GHG from pre-

industrial times to the 21st century. Radiative forcing can be described as change in the 

balance of radiation in W/m2 between incoming solar radiation and outgoing infrared 

radiation. RCP 2.6 (2.6 W/m2), RCP 4.5 (4.5 W/m2), RCP 6 (6 W/m2), and RCP 8.5 (8.5 

W/m2) are common RCP values. The higher RCP values represent higher predicted 

radiation in the future. In addition, downscaling can be performed using any acceptable 

downscaling method such as Bias Correction and Spatial Downscaling (BCSD), 

Constructed Analogues (CA), and Daily Bias Correction Constructed Analogs (BCCA). 

More information on these models can be found in Maurer et al. (2008 and 2010).  

In order to consider all relevant future climate scenarios, different GCMs, RCP 

values and downscaling techniques should be examined. Such analysis has been 

performed by the South Central Climate Science Center (SCCSC) for the Red-River basin 
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(McPherson 2016) as part of a previous research project. CCSM4, MIROC5, and MPI-

ESM-LR models (Gent et al. 2011; Watanabe et al. 2010; Giorgetta et al. 2013) from 

CMIP5 project along with three RCP values (2.6, 4.5, and 8.5) and three statistical 

downscaling methods has been investigated in their analysis. Cumulative Density 

Function transform (CDFt) (Vrac and Michelangeli 2009), Equi-distant Quantile Mapping 

(EDQM) (Li et al. 2010), and Bias Correction Quantile Mapping (BCQM) (Ho et al. 2012) 

are the three downscaling methods that adopted in their analysis. 

Each RCP provides results based on a given greenhouse gas concentration. 

RCP2.6 uses a greenhouse model described as a peak and decline model. This accounts 

for the ultimate peak in greenhouse emissions and then a decline in the atmospheric 

concentrations of these gasses in time. RCP4.5 models make predictions based on a 

stabilization of the greenhouse gases around the year 2100 with no appreciable change 

in concentrations afterward. RCP8.5 modeling assumes that greenhouse gases continue 

to increase with time and no indicated stabilization. These three RCP models result in a 

range of possible outcomes for the global climate that span from a best case scenario to 

the worst case scenario. This range provides a reasonable assumption to establish 

boundaries for expected future climate.  

The CDFt downscaling method uses a large scale Cumulative Density Function 

(CDF) model and calculates a mathematical transform function to apply to the data such 

that the resulting model is equivalent to the large-scale CDF, but focused on the smaller, 

local scale (Vrac and Michelangeli 2012). Equidistant quantile mapping downscaling 

technique is derived by taking the difference between the CDF of the global climate model 

and the CDF of a reference set of data. This reference set of data could be a CDF of 

historical observations or analysis outputs of the past climate. This difference is then 

subtracted from the CDF of the future climate given by the global climate model. This 

results in the bias correction for future global climate model data outputs (Sachindra et al. 

2014). 

Streamflow data was obtained from these models allowing for a comparison 

between RCP values of 2.6, 4.5, and 8.5. From this comparison, a reasonable 

determination can be made on the future expected stream flow (up to the year 2100). 
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These models show how differing concentrations of greenhouse gases can affect the 

discharge of a major river by affecting the surface temperature and precipitation for the 

given area. The streamflow data given by the models starts on January 1, 1961 and 

provides daily values until December 31, 2099. With the sheer amount of data given from 

these models, the data was analyzed in 12 sections with each being a month long. Two 

months will be illustrated in this report, the months of July and January. These two months 

are chosen based on the initial observation and analysis of the historical data for those 

months as shown in Figures 2 and 6. Figure 2 shows that in January, deviation from 

normal rainfall is decreasing suggesting a trend of decreasing rainfall. Figure 6 shows 

that the deviation from normal precipitation is increasing, meaning that from 1974 to 2015 

a trend of increasing rainfall is occurring. Figures 11 and 12 show the historical discharge 

adopted from U.S. Geological Survey (USGS 2017) for the Red River near Gainesville, 

Texas for the month of January and July respectively. As shown in these figures, there is 

a distinct correlation between decreasing rainfall and decreasing river discharge in 

January, and increasing rainfall and increasing discharge in July. This correlation exists 

for all months and is expected.  

 

Figure 11. Historical January discharge for the Red River 1974-2015 
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Figure 12. Historic July discharge for the Red River 1974-2015 

Figure 13 illustrates the July river discharge resulting from one climate model adopted 

from McPherson (2016) and the historical data. It can be seen that the results of the model 

do not match historic data. This may be observed when looking at an individual climate 

scenario, characterized by its own GCM, downscaling technique, and RCP value, versus 

the historical data. Accordingly, a common practice is to use all available datasets to 

consider uncertainties in future streamflow prediction (Seager et al. 2007; Pierce et al. 

2009). This however provides a wide range of possible bounds within the time span 

covered by the prediction models. 

Since no reliable prediction can be made using a single climate scenario, all the 

climate model data was averaged every day for the months of January and July between 

1974 to 2015. This was then plotted against the historical data to observe any similarity 

in trends on a month by month basis. It should be noted that the BCQM downscaled data 

was not included due to inaccuracies stated in Wayne (2013). Figures 14 and 15 show 

the results of this analysis for January and July, respectfully. This figures show the 

historical and modeled data for in January and July 1974 to 2015. The figure shows the 

historical data, and the mean, mean plus one standard deviation, and mean minus one 

standard deviation of the modeled data. In addition, a linear trend-line associated with 

each of these data sets is provided in the figures.  
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Figure 13. Historic river discharge data compared to CCSM4_RCP2.6 model data for 
the month of July 1974 to 2015 

 

Figure 14. Model average versus historic data for January 1974-2015 
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Figure 15. Model average versus historical data for July 1974-2015 

From January data presented in Figure 14, it is observed that the average trend lines for 

the model and the historical data do not coincide; however, the model captures the 

historical data within one standard deviation from the average. Figure 15 presents the 

same analysis with the July data. With the ability to achieve relatively accurate prediction 

of historic data, the data set was expanded to include future data points associated with 

all the models, as well as the past records. This comprehensive data set was next used 

to predict the future risk of bridge failure under flood and flood-induced scour. As before, 

the BCQM downscaled data is not included in the analysis. The daily discharge of the 18 

climate scenarios are averaged and the daily standard deviation was also computed. For 

the time span January 1, 1961 to December 31, 2099. This data is then plotted against 

the average daily discharge from January 1974 to January 2015. The results are shown 

in Figure 16. 
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Figure 16. Prediction average versus historical daily streamflow 1961-2099 

Figure 16 shows that both the model average and the historical data discharge trends are 

declining. Based on the results of this plot, the model average tends to be a relatively 

good predictor for future discharge; however, as with every statistical prediction, the 

accuracy tends to decrease overtime as suggested by the increasing standard deviations 

(see Figure 15). 

TIME DEPENDENT SCOUR PREDICTION 

Flood induced scour significantly affects the time-variant strength and stability of bridges 

that are subjected to flood conditions. Bed material characteristics, bed configuration, flow 

characteristics, fluid properties, and the geometry of the pier and footing are recognized 

as factors that govern the local scour at piers. In the U.S. bridge design and assessment 

practice, design specifications such as the AASHTO LRFD (2010) include 

recommendations for design of bridge piers against scour, which requires this design to 

be performed on the basis of an approved method for scour predictions. These methods 

are generally based on equations that provide the maximum expected scour depth. The 

foundations must be placed under this depth to avoid scour failure. In this project, the 
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scour depth at piers is calculated as HEC-18 (kon et al. 1993) which was established 

using a set of flume tests considering different soil conditions. HEC-18 provisions for 

calculating maximum scour depth is defined as follows: 
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In which ds is scour depth, k1 is correction factor for pier nose shape, k2 is correction factor 

for angle of attack of flow, k3 is correction factor for bed condition, b is pier width, y0 is flow 

depth at upstream of the pier, V is velocity of flow in upstream, and F0 is Froude number. 

Finally, the time dependent scour depth is calculated using the multi flood accumulation 

model proposed in Briaud, et al. (1999). This model is suitable for evaluating the time 

dependent scour depth in cohesive soils where the equilibrium scour may not be reached 

during a single flood event. In this model, the velocity histogram is assumed to be a step 

function with a constant velocity value for each step (Kwak, 2001). In case of quantifying 

the time dependent scour depth, two general cases may happen, case one is when a 

small flood is followed by a big flood and case two is when a big flood is followed by a 

small flood. In case one, the scour depth continues to increase after flood one. While in 

case two, the scour depth due to flood two cannot initiate any additional scour and the 

scour depth remains constant. Since, the scour holes are assumed to remain intact 

between the floods, this model represents the worst case scenario that might happen due 

to the floods. Figure 17 shows the multi-flood accumulation methodology adopted in both 

cases.  
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Figure 17. Schematic flood accumulation methodology (adapted from Briaud et al. 
1999) 

CAPACITY OF BRIDGE FOUNDATIONS 

Although the proposed risk assessment approach is similarly applicable to various types 

of bridge foundation, this project focuses on the capacity of bridges constructed using pile 

foundations. Lateral and axial failure limit states are defined to assess the behavior of this 

foundation type under horizontal and vertical loads and compute the failure probability. 

The ultimate lateral load carrying capacity HL of one pile is (Prasad and Chari 1999) 

( ) )7.17.2(tan3.0 2 LaaBKKH PL −+=                           (3) 
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where η is shape factor to account for the non-uniform distribution of earth pressure, Kp 

is passive earth pressure coefficient, K is lateral earth pressure coefficient, δ is interface 
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friction angle between the pile and the soil, γ is effective unit weight of soil, a is depth to 

the point of rotation, B is diameter or width of the pile, L is embedded length of pile, and 

e is eccentricity of loading. In this model, the shear resistance contribution from both the 

front soil and side soil is taken into account. In order to evaluate the capacity of each pile 

in the pile group, a reduction factor is applied to the capacity of a single pile (Hannigan et 

al. 1997). An equivalent circular diameter of H-pile is computed based on Reese and Van 

Impe (2010). 

The ultimate axial load carrying capacity Rv is expressed as a sum of shaft resistance and 

toe resistance of a pile as: 

psV RRR +=                                                    (5) 

sss AfR =                                                       (6) 

ppp AqR =
                                                     (7) 

where, Rs is the shaft resistance and Rp is the toe resistance of the piles. fs is unit shaft 

resistance over the pile surface area, As is pile shaft surface area, qp is unit toe resistance 

over the pile toe area, and Ap is pile toe area.  

BRIDGE RISK ANALYSIS 

The proposed risk assessment approach contains four main modules, namely climate 

modeling, load prediction, resistance analysis, and probabilistic structural performance 

evaluation. First, the downscaled climate data are extracted from the appropriate GCMs 

and streamflow time-histories are generated. The live, dead, and flood induced loads are 

estimated based on bridge dimensions and discharge data. Scour effects are then 

quantified and the lateral and axial resistance of bridge foundations are quantified. Finally, 

the time dependent failure probability and risk profiles are established based on defined 

axial and lateral failure limit states. This process is performed using probabilistic analysis 

and Monte Carlo simulation. A layout of the risk analysis framework proposed in this 

report is shown in Figure 18.  
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Figure 18. Layout of the proposed risk analysis approach 
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The proposed framework of this study contains four main modules: (a) climate data 

analysis and river flow prediction, (b) estimating load effects, (c) resistance evaluation, 

and (d) predicting time-dependent performance profile. As the first step of this framework, 

suitable global climate models for the region of interest should be selected. Next, the 

downscaled precipitation and temperature profiles are analyzed and the river streamflow 

is predicted. In this study, a hybrid conceptual-metric tool is employed in the streamflow 

modeling. The resulting streamflow prediction profiles are then used to predict scour 

depth and assess the structural performance. Next, the probability of bridge failure is 

found using probabilistic simulations. The last step of this framework is focused on 

estimating the consequences of bridge failure and establishing the time-dependent risk 

profile.  

In this approach, bridge piers are subjected to traffic live loads and dead loads computed 

using the AASHTO LRFD Bridge Design Specifications (AASHTO 2014). In addition, 

flood-induced lateral load FL acting on bridge pier is calculated as (Cuomo et al. 2008): 

ApFL =                                                    (8) 

With 
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where A is the area of accumulated debris, p is water pressure on piers, CD is drag 

coefficient, and Vappr is velocity of stream flow. 

For deep pile foundations, failure will happen when axial or lateral forces exceed the 

foundation capacity reduced due to scour formation. In such case, the lateral and axial 

failure limit states can be defined based on pile capacity models discussed above. These 

performance functions are defined as 

)()()( tLtRtG vvv −=                                          (10) 

)()()( tLtRtG lll −=                                          (11) 

 

where Gl (t) and Gv (t) are lateral and vertical performance functions at time t, respectively, 

Rv (t) and Rl (t) represent the respective time-variant vertical and lateral capacities, and 
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Lv(t) and Ll (t) are the respective vertical and lateral load effects at time t. These 

performance functions are used to evaluate the probability of failure and risk due to flood 

and flood-induced scour. The point-in-time probability of failure is  

Pf (t) = P [any Gi(t) < 0]                                   (12) 

where Pf (t) is point-in-time probability of failure and Gi (t) is the ith performance function. 

The probability of failure us computed using Monte Carlo simulation executed in MATLAB 

environment with 100,000 random samples to properly consider various uncertainties. 

The system failure probability is computed as the failure probability with failure modes 

connected in series. The cumulative annual probability of failure TDP(yt), representing the 

cumulative distribution function of the time to failure, is computed as (Decò and Frangopol 

2011) 
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Finally, the risk of structural failure is calculated based on the evaluated failure 

consequences as  

Risk (t) = TDP (yt) × C                                    (14) 

where Risk (t) is the time dependent risk, and C represents the direct and indirect 

consequences of failure calculated based on rebuilding cost, running cost, and time loss 

due to the bridge failure and/or road closure due to maintenance and repairs. Equation 6 

shows the relationship between these terms (Stein et al. 1999). 

C = CR1+CR2+CR3                                                           (15) 

in which the rebuilding cost (CR1) is estimated as a function of bridge area considering 

length and width of the bridge. This cost is computed as 

CR1 = Crc×Wb×Lb                                                             (16) 

where CR1 is total rebuilding cost ($), Crc is rebuilding cost ($) per unit area, Wb is bridge 

width (m), and Lb is bridge length (m). The running cost represents the additional required 

cost of vehicles on detour due to bridge closure and it is calculated as 

CR2 = Crv×D×ADT×d                                       (17) 
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where CR2 is total running cost ($), Crv is average cost of running vehicle ($/km), D is 

detour length (km), ADT is average daily traffic affected by bridge closure (vehicles/day), 

and d is duration of detour (days). The time loss cost as a function of additional time loss 

for passenger cars and trucks is calculated as  
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with CR3 representing the total cost of time loss ($), C1 is value of time per adult ($/hr.), C2 

is value of time for truck ($/hr.), S is average detour speed (km/hr.), T is average daily 

truck traffic (%), and O is occupancy rate.  

CASE STUDY 

The presented framework is illustrated on the South Bound I-35 Bridge over the Red River. 

The bridge serving a major freight route linking Southern and Northern US states is 

located on the Oklahoma-Texas border. This bridge accommodates an average daily 

traffic of 19,800 vehicles with 36% average daily truck traffic (FHWA 2016). During the 

past few decades, the Red River has experienced several heavy floods which caused 

significant damage to surrounding areas. The most recent severe flood occurred in May 

2015, in which the water reached the level of the superstructure. In addition, several other 

bridges along the Red River basin experienced partial or total failure during this flood 

season (Fechter 2015; Danner and Fuller 2015). The I-35 bridge represents an ideal 

example due to its strategic location on a major freight route, the aggressiveness of 

flooding conditions on the Red River, the large daily traffic utilizing the bridge, and the 

lack of alternative routes in case of bridge failure. Figure 19 shows the location of the 

bridge on the I-35 over the Red River. 

The I-35 bridge superstructure consists of five steel plate girders supporting a reinforced 

concrete deck, while the substructure is composed of multiple piers supported by steel H-

piles. The bridge is 118.3 m long and 9.5 m wide, with two traffic lanes. The bridge has 

11 piers and 32.3 m long spans. Since not all the characteristics of the bridge could be 

obtained, some assumptions related to dimensions were placed. These include the 
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thickness of the concrete deck (35 cm) and the width of the bridge piers (1.2 m). Based 

on the original construction drawings, the riverbed level is considered to be 10 m below 

the deck. In this study, the failure risk analysis has been performed considering a single 

pier. However, system analysis covering all the piers can be performed using series-

system reliability formulation. The studied bridge pier has two groups of 9 steel H-piles 

(HP 12x53 steel piles), each is 11.2 m long. Piles are aligned such that their strong axis 

is perpendicular to the direction of streamflow.  

CLIMATE MODELING, FLOOD, AND SCOUR PREDICTION 

The streamflow data using MPI_ESM_LR, CCSM4, and MIROC5 global climate models 

downscaled with BCQM and CDFt methods and RCP 2.6, RCP 4.5, and RCP 8.5 for the 

location of interest are adopted from McPherson (2016). The combination of three GCMs, 

three RCP values, and two downscaling methods results in eighteen different streamflow 

datasets. These datasets are implemented in the proposed risk assessment approach to 

quantify the risk of I-35 bridge failure. 

 

Figure 19. Geographical location of the I-35 bridge over Red River (Google 2018)  

Scour modeling for each streamflow time-series, corresponding to a given climate 

scenario, is performed using the Equation (1). The results of maximum scour depth 

prediction are obtained using the method proposed in Briaud, et al. (1999). The time-
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dependent scour depth associated with different climate scenarios is then established. 

Figure 20 shows the time dependent scour depth profiles for all climate scenarios. As 

shown, there is a considerable variability in the scour depths among the considered 

scenarios. The results depict up to 45% difference in final scour depth between different 

climate datasets. This highlights the significant uncertainty associated with the scour 

prediction considering climate change and justifies the need for probabilistic analysis.  

 

 

Figure 20. Time dependent scour depth results based on different GCMs 

TIME DEPENDENT RISK ASSESSMENT 

In order to consider the uncertainties associated with load and resistance effects in 

performance prediction, Monte Carlo simulation with 100,000 samples is used to draw 

samples from the time-variant scour depth at the investigated bridge pier. Next, each 

sample from the distribution is used to perform the time dependent scour depth prediction. 

The internal friction angle of soil is considered as a random variable that follows a normal 

distribution with mean value of 36° and standard deviation of 1.33 (Fellenius 1991). The 

unit weight of saturated soil is assumed 124 lbs /ft3, and coefficient of lateral earth 

pressure is assumed 0.4. In addition to soil parameters, the streamflow is treated as a 
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random variable. The predicted streamflow of each year is used to predict the parameter 

of the best exponential distribution fit and Monte Carlo simulation is used to find the 

annual histograms of the time-variant scour depth. The probabilistic scour depth is next 

used to calculate probability of failure using the performance functions given by Equations 

(10) and (11). Axial and vertical load capacity of the piles are calculated using equations 

(3) and (5). Figure 21 shows the probabilistic time-variant capacity of the piles in lateral 

and axial directions. Vertical loads from traffic and dead load of the structure are 

calculated based on AASHTO LRFD Specifications (AASHTO 2014) considering HL-93 

loading to obtain maximum vertical forces on the bridge supports. Lateral load due to 

discharge is calculated using Equation (8). With the probabilistic load and capacity terms 

in the limit state functions identified, the annual probability of failure can be obtained using 

the Monte Carlo simulation results. 

After establishing the failure probability profiles, consequences due to bridge failure are 

evaluated considering repair cost, running cost, and time loss cost, calculated using 

Equations (16), (17), and (18), respectively. The failure risk is then computed using 

Equation (14). All the parameters used in calculating the consequences are considered 

random variables, except the detour length (D) and the duration of detour (d). Table 1 

presents the values of deterministic parameters and the descriptors of randomly 

distributed parameters used in calculating the failure risk. 

In this study, it is assumed that the effect of inflation negates the money interest; 

accordingly, the discount rate of money is assumed to be zero. The detour length is 

derived by analysis of the transportation network to which the bridge belongs. The area 

on the I-35 before and after the bridge is analyzed to identify alternative routes in case of 

bridge failure. The analysis indicates that the average travel time is 25 minutes with the 

intact bridge, while the detour will result in an average of 60 minutes travel time in case 

of bridge failure. In order to compute the failure probability and risk, Monte Carlo 

simulation with 100,000 samples is adopted. Figure 22 shows the mean, mean plus one 

standard deviation, and mean minus one standard deviation of time dependent risk profile. 
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Figure 21. Time variant resistance of piles in (a) axial (b) lateral directions 
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Table 1. Parameters for evaluation of rebuilding, running, and time-loss costs 

Parameter Notation Value 
Probabilistic 
Parameters 

References 

Rebuilding cost 
($/m2) 

Crc $894 / m2 Lognormal, COV= 0.2 
Deco & Frangopol 

(2011) 

Average cost of 
running vehicle 

($/km) 
Crv $0.08 / km Lognormal, COV = 0.2 

Deco & Frangopol 
(2011) 

Detour Length D 90 km Deterministic 
Estimated based 

on analysis of 
traffic network 

Average Daily 
Traffic 

ADT 19,800 vehicles/day Lognormal, COV = 0.2 FHWA (2016)  

Duration of 
detour 

d 
182.5 days ( 6 

months ) 
Deterministic Assumed 

Cost of time 
per adult ($/hr.) 

C1 $22.82 Lognormal, COV = 0.15 
Deco & Frangopol 

(2011) 

Cost of time for 
truck ($/hr.) 

C2 $26.97 Lognormal, COV = 0.15 
Deco & Frangopol 

(2011) 

Average detour 
speed (km/hr.) 

S 64 Lognormal, COV = 0.15 
Deco & Frangopol 

(2011) 

Average daily 
truck traffic 

T 36% Lognormal, COV = 0.2 FHWA (2016)  

Occupancy 
rate 

O 1.5 adults Lognormal, COV = 0.15 
Deco & Frangopol 

(2011) 
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Figure 22. The mean value of time dependent risk based on all climate models 

EFFECT OF CLIMATE CHANGE ON GRADUAL 
DETERIORATION OF BRIDGES 

In addition to the impacts on flood hazard occurrence and scour progression, climate 

change could also affect the corrosion propagation rate in structural components due to 

the change in carbon dioxide concentration, temperature, and humidity at a given location. 

These changes may occur due to carbonation or chloride penetration to steel 

reinforcement. Specifically, the increase in temperature profiles increases the material 

diffusivity and consequently increases the corrosion rate in reinforcement (Stewart, et al. 

2012).  

In addition, in case of steel structures and in particular steel piles which play vital role in 

the maintaining the stability of large number of bridges and marine structures, Chaves et 

al. (2016) conducted probabilistic analysis on corrosion of steel marine structures under 

global warming and nutrient pollution. Their proposed methodology, applied to marine 

piles, highlights the significant role of seawater temperature and microbiological nutrients 

on corrosion estimation. Results of their study indicated that the long-term reliability of the 

structure is highly likely to be affected by the increase of marine nutrients; the marine 

nutrients may also increase due to global warming. 



30 
 

Stewart et al. (2011 and 2012) and Wang et al. (2012) considered the effects of climate 

change on the corrosion initiation and propagation in reinforced concrete structures. In 

most of these studies, temperature and carbon dioxide emission scenarios based on the 

global climate models are implemented in the structural deterioration prediction process.  

Additionally, probabilistic analysis which considers the effect of uncertainties associated 

with CO2 concentration, material properties, dimensions, and modeling procedure is 

presented. The results of these studies indicates a growing risk due to carbonation- and 

chloride-induced corrosion. Although, significant research in quantifying the effect of 

climate change on risk of corrosion initiation and progression has been conducted, the 

current review of the literature shows that such quantification has yet to find its way to 

maintenance and repair optimization procedures implemented in bridge management 

approaches.  

LIFE-CYCLE MANAGEMENT AND RISK-BASED 
MAINTENANCE OPTIMIZATION 

Infrastructure decision making process is generally affected by the strict budgetary 

constraints and limited resources available for maintenance and repair operations. 

Therefore, using optimization techniques could result in achieving an appropriate and 

efficient life-cycle management solutions. These techniques are capable of providing a 

balance between conflicting life-cycle management criteria (e.g., total maintenance cost 

and expected service life). Optimization techniques can provide the optimal management 

activities as the solution of an optimization problem that simultaneously minimizes the life 

cycle costs and maximizes expected life-cycle management cost. 

An efficient framework for life cycle management should consist of modules for 

performance prediction under single or multiple hazards, intervention optimization, 

reliability and cost-informed decision making. Examples of this type of management 

frameworks can be found in Frangopol and Soliman (2016). Figure 23 shows a schematic 

view of such frameworks. Several modules are used in this framework. The first module 

identifies the deterioration mechanisms and hazards that would affect the structural 

performance. Next, the consequences of failure are estimated and the performance of 
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structure is evaluated. The results of inspection and structural health monitoring are also 

integrated in this framework. Improved structural performance predictions are then 

employed and the optimum maintenance and management strategies are established to 

assist in decision making regarding future bridge interventions.  

 

Figure 23. General life-cycle management procedure for bridges 

In general, multi-objective optimization procedures would provide several solutions to the 

optimization problem. The decision-makers can choose their best alternatives based on 

the problem constrains or any other practical considerations. However, several methods 

can also be used to assist in the decision-making process. For instance, the relative 

desirability of maintenance strategies can be investigated using utility theory. This theory 

provides a utility value for each management alternative based on the decision-maker’s 

preferences and attitude. The relative values can then be measured, combined, and 
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compared using to establish the best solution based on the decision-maker’s preferences 

(Ang and Tang, 1984). The decision-making process based on this approach has been 

integrated into bridge management in Sabatino et al. (2015). 

CONCLUSIONS 

This report presented a probabilistic framework for risk assessment of bridges under flood 

and flood-induced scour considering climate change. The flood and streamflow prediction 

is performed using Global Climate Models which result in streamflow time-histories for 

the time span of 1961 to 2100 at the investigated bridge location. Time-dependent scour 

depth is quantified and its effect on the axial and lateral capacity of the bridge foundation 

is computed. The annual point-in-time failure probability of the bridge due to flood-induced 

loads is used to predict the cumulative failure probability profiles of the bridge. After 

evaluating the consequences associated with bridge failure, the time-variant bridge risk 

profile is established. In addition, a risk-based probabilistic framework for optimizing the 

management activities of bridges susceptible to damage due to floods, flood-induced 

scour, and corrosive environment is discussed. The following conclusions are drawn:   

• The time-variant scour depth significantly depends on the adopted climate 

scenarios. A variation of 45% in the final scour depth predicted using different 

climate scenarios has been observed at the studied location. Accordingly, a 

probabilistic approach considering potential scenarios is necessary to properly 

quantify the risk of bridge failure due to flood and flood-induced scour hazards. 

• The data analysis for the investigated location has shown that precipitation events 

have become increasingly variable and indications of wetting months shifting 

further from normal has been observed. 

• For the investigated location, the RCP 2.6 associated with each model predicts the 

highest scour depth, while the 8.5 RCP values predict the lowest scour depth 

profiles. 

• The proposed approach based on climate models provides a rational prediction of 

future risk while properly accounting for uncertainties associated with future 

climate and flood conditions. 
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• The proposed risk quantification approach can be integrated into an optimization 

framework to establish the optimum maintenance solutions which minimize the 

total life-cycle cost of the bridge under investigation and maximizes its service life. 
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